Abstract
Although remote ischemic postconditioning (RIPC) was shown to confer cardioprotection against myocardial ischemia/reperfusion (I/R) injury in normal animals, whether RIPC-induced cardioprotection is altered in the presence of hypercholesterolemia, a comorbidity with acute myocardial infarction (AMI) patients has yet to be determined. Normal or 2% cholesterol chow was fed to male C57BL/6J mice for 12 weeks to induce hypercholesterolemia, then normal or hypercholesterolemic murine hearts were exposed to AMI by coronary artery ligation. RIPC was induced by four episodes of 5 min femoral artery occlusion followed by 5 min reperfusion immediately after myocardial reperfusion in mice. Following I/R, RIPC significantly attenuated postischemic infarct size, hindered cardiomyocyte apoptosis, improved cardiac systolic function, decreased phosphatase and tensin homolog deleted on chromosome ten (PTEN) expression, and further increased Akt and GSK-3β phosphorylation in non-hypercholesterolemic, but not in hypercholesterolemic mice. Application of the PTEN inhibitor bisperoxovanadium (BpV) (1.0 mg/kg) reduced postischemic infarct size, attenuated cardiomyocyte apoptosis, and improved cardiac dysfunction in normal, but not in hypercholesterolemic mice. Further, increased dose of BpV (2 mg/kg or 10 mg/kg) failed to rescue the detrimental effects of hypercholesterolemia on I/R in mice following I/R. Especially important, we demonstrated that the combination BpV and RIPC exerted marked cardioprotective effects both in normal and hypercholesterolemic mice with I/R, indicating that PTEN inhibition restores RIPC-elicited myocardial protection in the presence of hypercholesterolemia. Our results demonstrated that hypercholesterolemia attenuated RIPC-induced cardioprotection against I/R injury by alteration of PTEN/Akt/GSK3β signals, and inhibition of PTEN rescued RIPC-induced cardioprotection in the presence of hypercholesterolemia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.