Abstract
Neuronal apoptosis is a central pathological process in subarachnoid hemorrhage (SAH)-induced early brain injury. Endoplasmic reticulum (ER) stress was reported to have a vital role in the pathophysiology of neuronal apoptosis in the brain. The present study was designed to investigate the potential effects of ER stress and its downstream signals in early brain injury after SAH. One hundred thirty-four rats were subjected to an endovascular perforation model of SAH. The RNA-activated protein kinase-like ER kinase (PERK) inhibitor GSK2606414 and the Akt inhibitor MK2206 were injected intracerebroventricularly. SAH grade, neurologic scores, and brain water content were measured 72h after subarachnoid hemorrhage. Expression of PERK and its downstream signals, Akt, Bcl-2, Bax, and cleaved caspase-3, were examined using Western blot analysis. Specific cell types that expressed PERK were detected with double immunofluorescence staining. Neuronal cell death was demonstrated with terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL). Our results showed that the expression of p-PERK and its downstream targets, p-eIF2α and ATF4, increased after SAH and peaked at 72h after SAH. PERK was expressed mostly in neurons. The inhibition of PERK with GSK2606414 reduced p-PERK, p-eIF2α, and ATF4 expression. Furthermore, GSK2606414 treatment increased p-Akt levels and the Bcl-2/Bax ratio as well as decreased cleaved caspase-3 expression and neuronal death, thereby improving neurological deficits at 72h after SAH. The selective Akt inhibitor MK2206 abolished the beneficial effects of GSK2606414. PERK, the major transducer of ER stress, is involved in neuronal apoptosis after SAH. The inhibition of PERK reduces early brain injury via Akt-related anti-apoptosis pathways. PERK may serve as a promising target for future therapeutic intervention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.