Abstract

Sperm-specific potassium channel (KSper) comprised of pore-forming subunit SLO3 and auxiliary subunit LRRC52 is of importance for sperm fertility. The deficiency of KSper in both mice and humans resulted in severe impairments of sperm functions including sperm hyperactivity and acrosome reaction. Previous reports suggested that mouse KSper modulated sperm function possibly by affecting sperm intracellular pH (pHi). However, the precise signaling mechanism of human KSper (hKSper) on the regulation of sperm functions was largely unclear. To explore the regulatory role of hKSper on sperm flagellar pHi. More than 50 sperm donors were recruited during a period of 1 year. As reported in our previous work, we quantitatively measured flagellar pHi by employing a single-cell pH fluorescent recording on human spermatozoa loaded with pH indicator pHrodo Red. Three different hKSper antagonists including clofilium, quinidine, and a polyclonal antibody of LRRC52 (LID1) were utilized to evaluate the effect of hKSper inhibition on sperm flagellar pHi. Given the predominant role of hKSper on the regulation of membrane potential (Em), we first detected a considerable depolarization (about 25-30mV) of Em evoked by clofilium and quinidine. Subsequently, it was shown that flagellar pHi values of human spermatozoa were significantly decreased by the treatment of clofilium (50 µM, from 7.13±0.11 to 6.43±0.12), quinidine (500 µM, from 7.00±0.11 to 6.64±0.08) and LID1 (20 µg/mL, from 6.98±0.16 to 6.67±0.22). Moreover, we found that when human spermatozoa were pre-incubated with a high K+ solution (135mM), both the depolarization of Em and the acidification of flagellar pHi evoked by clofilium and quinidine were abolished. In addition, we found that extracellular substitution of N-methyl-D-glucamine for Na+ abolished pHi acidification induced by hKSper inhibition. Our results demonstrate that hKSper inhibition evokes flagellar pHi acidification of human spermatozoa, suggesting that flagellar pHi maintenance is an important signaling mechanism of hKSper on the regulation of sperm functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.