Abstract

Hydrogen sulfide (H2S) is a gasotransmitter that modulates neurotransmission. Indeed, it has been recently demonstrated that H2S inhibits the sympathetic outflow in male rats, although the mechanisms remain elusive. Thus, this study evaluated the role of potassium channels on NaHS-induced sympathoinhibition. For this purpose, male and female Wistar rats were anesthetized, pithed, and cannulated. After that, animals received selective electrical stimulation of the vasopressor sympathetic outflow (T7-T9). Prior to 310 μg/kg·min NaHS i.v. continuous infusion animals received: (1) bidistilled water (tetraethylammonium, TEA; 4-aminopyridine, 4-AP; and barium chloride, BaCl2; vehicle; 1 ml/kg); (2) TEA (non-selective K+ channels blocker; 16.5 mg/kg); (3) 4-AP (non-selective voltage-dependent K+ channels blocker; 5 mg/kg); (4) BaCl2 (inward rectifier K+ channels blocker; 65 μg/kg); (5) DMF 5%, glucose 10% and NaOH 0.1 N (glibenclamide vehicle; 1 ml/kg); (6) glibenclamide (ATP-dependent K+ channels blocker; 10 mg/kg); (7) DMSO 4% (paxilline vehicle; 1 ml/kg); and (8) paxilline (large-conductance voltage- and Ca2+-activated K+ channel blocker; 90 μg/kg). The NaHS-induced sympathoinhibition was: (1) equally observed in male and female rats; (2) unaffected by vehicles; (3) reversed by the potassium channel blockers. Taken together, our results suggest that NaHS-induced sympathoinhibition does not depend on sex and it is mediated by the activation of several potassium channels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call