Abstract

AimsDouble stranded protein kinase R cellular response is associated with various stress signals such as nutrients, endoplasmic stress, cytokines and mechanical stress. Increased PKR activity has been observed under diabetic and cardiovascular disease conditions. Most of the currently available PKR inhibitors are non-specific and have other effects as well. Thus, the aim of the present study was to examine the effect of novel PKR inhibitor indirubin-3-hydrazone (IHZ) in cultured rat H9C2 cardiomyocytes and wistar rats. Materials and methodsPKR expression was determined by Q-PCR, immunofluorescence and immunoblotting. The expression of different gene markers for apoptosis was measured by RT-PCR. Apoptosis and oxidative stress were determined by flow cytometry. KEY FINDINGS: High glucose (HG) treated H9C2 cardiomyocytes and high fructose (HF) treated wistar rats developed a significant increase in PKR expression. A significant increase in apoptosis and generation of reactive oxygen species was also observed in HG treated H9C2 cells and HF treated rats. Reduced vacuole formation and prominent nuclei were also observed in high glucose treated cells. Cardiac hypertrophy and increased fibrosis were observed in HF treated rats. All these effects of HG and HF were attenuated by novel PKR inhibitor, indirubin-3-hydrazone. SignificanceOur results indicate IHZ as an effective inhibitor of PKR in vitro and in-vivo, thus it may prove very useful in blocking the multiple harmful effects of PKR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.