Abstract

Context: Fatty liver is the first stage of alcoholic damage which is reversible with abstinence from alcohol. Mangiferin (MF) showed potent scavenging activity on diphenyl-1-picrylhydrazyl radicals which stimulate liver regeneration in various liver injuries.Objective: Although, MF shows hepatoprotection against various liver disorders but due to rapid clearance and limited solubility in lipoid environment, there is problem of its poor absorption from intestine hence poor bioavailability. Owing to which there is a need to develop MF herbosomes to resolve the problem of poor bioavailability to enhance the therapeutic potential.Methods: Successfully prepared MF herbosomes through complexation with phospholipids were characterized by physicochemical, chromatography, spectroscopy (differential scanning calorimetry (DSC), infrared (IR), and nuclear magnetic resonance (NMR)), ex vivo absorption using everted small intestine sac technique and in vivo studies using ethanol inducing hepatotoxicity in albino rats and comparing the results against plain MF.Results: Ex vivo study showed significant increased absorption of MF from prepared MF herbosomes as compared to plain MF. The hepatoprotective potential of MF herbosomes evaluated by in vivo study revealed significantly decreased levels of serum glutamate oxaloacetate transminase (SGOT), serum glutamate pyruvate transminase (SGPT), total bilirubin, and alkaline phosphatase (ALP) in MF herbosomes as compared to plain MF. MF herbosomes also showed significantly decreased level of malonyl dehydrogenase along with increased levels of reduced glutathione, superoxide dismutase (SOD) and catalase as compared to plain MF which was also comparable to the standard drug, silymarin (SL).Conclusion: The above mentioned results showed that hepatoprotective and antioxidant potency of MF enhanced due to the preparation of its herbosomes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.