Abstract

Cisplatin (CDDP) is a chemotherapeutic agent that is widely used in the treatment of lymphomas and solid malignancies. However, its clinical usage is limited by its severe side effects in the kidneys. Glomerular and tubular injuries in the kidneys commonly progress to interstitial fibrosis and, ultimately, the end stage of renal failure. We previously reported that 3-acetyl-5-methyltetronic acid (AMT) had inhibitory effects on rat renal vitamin K1 2,3-epoxide reductase (VKOR) in vitro and also suppressed mesangial cell proliferation and, consequently, the formation of fibrosis via the vitamin K-dependent activation of the growth arrest-specific 6 (Gas6)/Axl pathway in anti-Thy-1 glomerulonephritis (Thy-1 GN) in rats. In the present study, we demonstrated that AMT alleviated the progression of renal fibrosis in CDDP-treated rats. The repeated intravenous administration of AMT for 28 days dose-dependently suppressed increases in plasma urea nitrogen and plasma creatinine levels as well as creatinine clearance in CDDP-treated rats. Furthermore, the treatment suppressed the expression of α-smooth muscle actin (SMA)-positive cells and ameliorated the extracellular matrix accumulation of collagen III, indicating an antifibrotic effect. In conclusion, our toxicological and histopathological results demonstrated quantitatively the pharmacological inhibitory effects of AMT on the progression of renal fibrosis in CDDP-treated rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.