Abstract

The present study investigates the effects of concurrent manipulations of nicotinic cholinergic receptors (nicotinic cholinergic agonist: nicotine 0.03, 0.1, 0.3 mg/kg, nicotinic cholinergic antagonist: mecamylamine 7.5 mg/kg) and serotonin neurons ( p-chlorophenylalanine (PCPA), 400/kg mg on each of 3 days) on spatial navigation (water maze, WM) and passive avoidance (PA) performance. Nicotine did not affect PA performance but at the highest dose slightly impaired WM performance. PCPA did not affect WM navigation or PA performance in saline or nicotine-treated rats. Nicotine restored WM and PA performance defect in mecamylamine pretreated rats. PCPA aggravated the WM defect and decreased the WM performance-improving effect of nicotine in mecamylamine pretreated rats. PCPA did not aggravate the PA performance defect of mecamylamine but completely blocked the PA performance-improving effect of nicotine in mecamylamine pretreated rats. These results suggest that serotonergic and nicotinergic cholinergic systems jointly modulate performance in WM and PA tests.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.