Abstract

BackgroundUncontrolled bleeding is one of the primary reasons for preventable death in both civilian trauma and military battle field. This study evaluates in vitro and in vivo hemostatic potential of four biopolymeric natural gums, namely, gum tragacanth, guar gum, xanthan gum, and gum acacia. In vitro evaluation of whole blood clotting time and erythrocyte agglutination assay were carried out. In vitro cytotoxicity studies with respect to each gum were done in human lymphocytes to ascertain percent cell viability. In vivo hemostatic potential of each gum (as sponge dressing and powder form) was evaluated in Sprague Dawley rats using tail bleeding assay and compared with commercially available hemostatic sponge. Other important parameters like (a) time taken for complete hemostasis, (b) amount of blood absorbed, (c) adherence strength of developed hemostatic dressing(s), (d) incidence of re-bleeding, and (e) survival of animals were also studied.ResultsOf the four test gums studied, xanthan gum (@3mg/ml of blood) and gum tragacanth (@35mg/ml of blood) were able to clot blood in least time (58.75±6.408 s and 59.00±2.082 s, respectively) and exhibited very good hemostatic potential in vitro. Except for xanthan gum, all other test gums did not exhibit any significant cytotoxicity at different time points till 24 h. In rat tail bleeding experiments, gum tragacanth sponge dressing and powder achieved hemostasis in least time (156.2±12.86 s and 76±12.55 s, respectively) and much earlier than commercially available product (333.3±38.84 s; p˂0.01).ConclusionResults indicate potential of gum tragacanth to be developed into a suitable hemostatic product.

Highlights

  • Uncontrolled bleeding is one of the primary reasons for preventable death in both civilian trauma and military battle field

  • In vitro whole blood clotting time was significantly reduced when whole blood was treated with xanthan gum (@ 3 mg/ml) or gum tragacanth (@ 35 mg/ml) in comparison to untreated control (p0.01)

  • Erythrocyte hemagglutination assay Erythrocyte agglutination assay was performed to check the interaction between blood cells and the four test gums

Read more

Summary

Introduction

Uncontrolled bleeding is one of the primary reasons for preventable death in both civilian trauma and military battle field. In vitro evaluation of whole blood clotting time and erythrocyte agglutination assay were carried out. In vivo hemostatic potential of each gum (as sponge dressing and powder form) was evaluated in Sprague Dawley rats using tail bleeding assay and compared with commercially available hemostatic sponge. Other important parameters like (a) time taken for complete hemostasis, (b) amount of blood absorbed, (c) adherence strength of developed hemostatic dressing(s), (d) incidence of re-bleeding, and (e) survival of animals were studied. In spite of advances in medical care in recent years, uncontrolled bleeding or hemorrhage still remains one of the primary causes of preventable death in civilian and combat trauma situations [1, 2]. There is an urgent need to develop an indigenous, efficacious and cost-effective hemostatic product for managing combatrelated hemorrhage in Indian troops

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call