Abstract
The voltage-dependent calcium channels present in mammalian and chicken brain synaptosomes were characterized pharmacologically using specific blockers of L-type channels (1,4-dihydropyridines), N-type channels (omega-conotoxin GVIA), and P-type channels [funnel web toxin (FTX) and omega-agatoxin IVA]. K(+)-induced Ca2+ uptake by chicken synaptosomes was blocked by omega-conotoxin GVIA (IC50 = 250 nM). This toxin at 5 microM did not block Ca2+ entry into rat frontal cortex synaptosomes. FTX and omega-agatoxin IVA blocked Ca2+ uptake by rat synaptosomes (IC50 = 0.17 microliter/ml and 40 nM, respectively). Likewise, in chicken synaptosomes, FTX and omega-agatoxin IVA affected Ca2+ uptake, FTX (3 microliters/ml) exerted a maximal inhibition of 40% with an IC50 similar to the one obtained in rat preparations, whereas with omega-agatoxin IVA saturation was not reached even at 5 microM. In chicken preparations, the combined effect of saturating concentrations of FTX (1 microliter/ml) and different concentrations of omega-conotoxin GVIA showed no additive effects. However, the effect of saturating concentrations of FTX and omega-conotoxin GVIA was never greater than the one observed with omega-conotoxin GVIA. We also found that 60% of the Ca2+ uptake by rat and chicken synaptosomes was inhibited by omega-conotoxin MVIID (1 microM), a toxin that has a high index of discrimination against N-type channels. Conversely, nitrendipine (10 microM) had no significant effect on Ca2+ uptake in either the rat or the chicken. In conclusion, Ca2+ uptake by rat synaptosomes is potently inhibited by different P-type Ca2+ channel blockers, thus indicating that P-type channels are predominant in this preparation.(ABSTRACT TRUNCATED AT 250 WORDS)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.