Abstract

Progesterone and 17β-estradiol induce vasorelaxation through non-genomic mechanisms in several isolated blood vessels; however, no study has systematically evaluated the mechanisms involved in the relaxation induced by 17β-estradiol and progesterone in the canine basilar and internal carotid arteries that play a key role in cerebral circulation. Thus, relaxant effects of progesterone and 17β-estradiol on KCl- and/or PGF2α-pre-contracted arterial rings were investigated in absence or presence of several antagonists/inhibitors/blockers; the effect on the contractile responses to CaCl2 was also determined. In both arteries progesterone (5.6–180μM) and 17β-estradiol (1.8–180μM): (1) produced concentration-dependent relaxations of KCl- or PGF2α-pre-contracted arterial rings; (2) the relaxations were unaffected by actinomycin D (10μM), cycloheximide (10μM), SQ 22,536 (100μM) or ODQ (30μM), potassium channel blockers and ICI 182,780 (only for 17β-estradiol). In the basilar artery the vasorelaxation induced by 17β-estradiol was slightly blocked by tetraethylammonium (10mM) and glibenclamide (KATP; 10μM). In both arteries, progesterone (10–100μM), 17β-estradiol (3.1–31μM) and nifedipine (0.01–1μM) produced a concentration-dependent blockade of the contraction to CaCl2 (10μM–10mM). These results suggest that progesterone and 17β-estradiol produced relaxation in the basilar and internal carotid arteries by blockade of L-type voltage dependent Ca2+ channel but not by genomic mechanisms or production of cAMP/cGMP. Potassium channels did not play a role in the relaxation to progesterone in both arteries or in the effect of 17β-estradiol in the internal carotid artery; meanwhile KATP channels play a minor role on the effect of 17β-estradiol in the basilar artery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call