Abstract
Novel synthetic opioids (NSO) are increasingly encountered in illicit heroin and counterfeit pain pills. Many NSO are resurrected from older biomedical literature or patent applications, so limited information is available about their biological effects. Here we examined the pharmacology of three structurally-distinct NSO found in the recreational drug market: N-(1-(2-phenylethyl)-4-piperidinyl)-N-phenylbutyramide (butyrylfentanyl), 3,4-dichloro-N-[(1R,2R)-2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700) and 1-cyclohexyl-4-(1,2-diphenylethyl)piperazine (MT-45). Radioligand binding and GTPγS functional assays were carried out in cells transfected with murine mu- (MOR-1), delta- (DOR-1) or kappa-opioid receptors (KOR-1). Antinociceptive effects were determined using the radiant heat tail flick technique in mice, and opioid specificity was assessed with the mu-opioid antagonist naloxone. Butyrylfentanyl, U-47700 and MT-45 displayed nM affinities at MOR-1, but were less potent than morphine, and had much weaker effects at DOR-1 and KOR-1. All NSO exhibited agonist actions at MOR-1 in the GTPγS assay. Butyrylfentanyl and U-47700 were 31- and 12-fold more potent than morphine in the tail flick assay, whereas MT-45 was equipotent with morphine. Analgesic effects were reversed by naloxone and absent in genetically-engineered mice lacking MOR-1. Our findings confirm that butyrylfentanyl, U-47700 and MT-45 are selective MOR-1 agonists with in vitro affinities less than morphine. However, analgesic potencies vary more than 30-fold across the compounds, and in vitro binding affinity does not predict in vivo potency. Taken together, our findings highlight the risks to humans who may unknowingly be exposed to these and other NSO when taking adulterated heroin or counterfeit pain medications.This article is part of the Special Issue entitled ‘Designer Drugs and Legal Highs.’
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.