Abstract

Chemokine receptors are relevant targets for a multitude of immunological diseases, but drug attrition for these receptors is remarkably high. While many drug discovery programs have been pursued, most prospective drugs failed in the follow-up studies due to clinical inefficacy, and hence there is a clear need for alternative approaches. Allosteric modulators of receptor function represent an excellent opportunity for novel drugs, as they modulate receptor activation in a controlled manner and display increased selectivity, and their pharmacological profile can be insurmountable. Here, we discuss allosteric ligands and their pharmacological characterization for modulation of chemokine receptors. Ligands are included if (1) they show clear signs of allosteric modulation in vitro and (2) display evidence of binding in a topologically distinct manner compared to endogenous chemokines. We discuss how allosteric ligands affect binding of orthosteric (endogenous) ligands in terms of affinity as well as binding kinetics in radioligand binding assays. Moreover, their effects on signaling events in functional assays and how their binding site can be elucidated are specified. We substantiate this with examples of published allosteric ligands targeting chemokine receptors and hypothetical graphs of pharmacological behavior. This review should serve as an effective starting point for setting up assays for characterizing allosteric ligands to develop safer and more efficacious drugs for chemokine receptors and, ultimately, other G protein-coupled receptors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call