Abstract

Recently, we identified a novel phosphodiesterase 10A (PDE10A) inhibitor, PDM‐042 ((E)‐4‐(2‐(2‐(5,8‐dimethyl‐[1,2,4]triazolo[1,5‐a]pyrazin‐2‐yl)vinyl)‐6‐(pyrrolidin‐1‐yl)pyrimidin‐4‐yl)morpholine). PDM‐042 showed potent inhibitory activities for human and rat PDE10A with IC 50 values of less than 1 nmol/L and more than 1000‐fold selectivity against other phosphodiesterases. Tritiated PDM‐042, [3H]PDM‐042, had high affinity for membranes prepared from rat striatum with a K d value of 8.5 nmol/L. The specific binding of [3H]PDM‐042 was displaced in a concentration‐dependent manner by PDM‐042 and another structurally unrelated PDE10A inhibitor, MP‐10. In rat studies, PDM‐042 showed excellent brain penetration (striatum/plasma ratio = 6.3), occupancy rate (86.6% at a dose of 3 mg/kg), and good oral bioavailability (33%). These data indicate that PDM‐042 is a potent, selective, orally active, and brain‐penetrable PDE10A inhibitor. In behavioral studies using rat models relevant to schizophrenia, PDM‐042 significantly antagonized MK‐801‐induced hyperlocomotion (0.1–0.3 mg/kg) without affecting spontaneous locomotor activity and attenuated the conditioned avoidance response (CAR) (0.3–1 mg/kg). In tests for adverse effects, PDM‐042 had a minimal effect on catalepsy, even at a much higher dose (10 mg/kg) than the minimal effective dose (0.3 mg/kg) in the CAR. Furthermore, PDM‐042 had no effect on prolactin release or glucose elevation up to 3 mg/kg, while risperidone increased prolactin release and olanzapine enhanced glucose levels at doses near their efficacious ones in the CAR. Our results suggest that PDM‐042 is a good pharmacological tool that can be used to investigate the role of PDE10A and may have therapeutic potential for the treatment of schizophrenia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call