Abstract

Suppression of the hypothalamic-pituitary-gonadal axis by peptides that act at the GnRH receptor has found widespread use in clinical practice for the management of sex-steroid-dependent diseases (such as prostate cancer and endometriosis) and reproductive disorders. Efforts to develop orally available GnRH receptor antagonists have led to the discovery of a novel, potent nonpeptide antagonist, NBI-42902, that suppresses serum LH concentrations in postmenopausal women after oral administration. Here we report the in vitro and in vivo pharmacological characterization of this compound. NBI-42902 is a potent inhibitor of peptide radioligand binding to the human GnRH receptor (K(i) = 0.56 nm). Tritiated NBI-42902 binds with high affinity (K(d) = 0.19 nm) to a single class of binding sites and can be displaced by a range of peptide and nonpeptide GnRH receptor ligands. In vitro experiments demonstrate that NBI-42902 is a potent functional, competitive antagonist of GnRH stimulated IP accumulation, Ca(2+) flux, and ERK1/2 activation. It did not stimulate histamine release from rat peritoneal mast cells. Finally, it is effective in lowering serum LH in castrated male macaques after oral administration. Overall, these data provide a benchmark of pharmacological characteristics required for a nonpeptide GnRH antagonist to effectively suppress gonadotropins in humans and suggest that NBI-42902 may have clinical utility as an oral agent for suppression of the hypothalamic-pituitary-gonadal axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call