Abstract

Endothelial dysfunction is considered as a major risk factor of cardiovascular complications of type I and type II diabetes. Our previous studies have demonstrated that endothelial dysfunction in the small mesenteric arteries from 12–16 week old type II diabetic mice was associated with decreased bio-availability of nitric oxide whereas endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation was preserved. The objective of the present study was to characterize EDHF-mediated relaxations of small mesenteric arteries from db/db mice. A depolarizing concentration of KCl or tetraethylammonium (TEA, 10 mM) significantly inhibited the EDHF-mediated relaxation to acetylcholine and bradykinin in small mesenteric arteries from both db/+ and db/db mice. Charybdotoxin or iberiotoxin alone and a combination of ouabain and barium significantly reduced the maximal relaxation to acetylcholine in small mesenteric arteries from db/db mice and charybdotoxin or iberiotoxin either alone or in combination with apamin reduced the sensitivity to the EDHF-mediated component of the relaxation response to bradykinin. 17-octadecynoic acid, but not catalase, significantly reduced the sensitivity to EDHF-mediated responses to bradykinin in db/db mice; 17-octadecynoic acid had no effect on acetylcholine-mediated relaxations. No differences were, however, detected for mRNA expression levels of calcium-activated potassium channels or connexins 37, 40, 43 and 45. Collectively, these data suggest that bradykinin-induced, EDHF-dependent relaxation in small mesenteric arteries from db/db mice is mediated via cytochrome P450 product that activates the large conductance calcium-activated potassium (BK Ca or Slo) channel, whereas the acetylcholine-induced, EDHF-mediated relaxation involves neither cytochrome P450 product nor hydrogen peroxide.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.