Abstract

The phylogenetic distributions of sigma- and phencyclidine receptors in neural tissues of 13 species and the pharmacological characteristics of these receptors in whole sea anemone and neural tissues of the guinea pig, chicken, and frog were studied. Specific binding of [3H]haloperidol and [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine, ligands that bind with high affinity to sigma- and phencyclidine receptors, respectively, was detected in all organisms examined. The order of potencies of various ligands to inhibit 1 nM [3H]haloperidol binding in brains of frogs and guinea pigs or 1 nM [3H]N-[1-(2-thienyl)cyclohexyl]-3,4-piperidine in chicken or guinea pig brain homogenates was very similar. However, the characteristics and stereospecificity of binding of the two radioligands in sea anemone were different than in higher organisms. The results suggest that sigma- and phencyclidine binding sites are evolutionarily old, as the characteristics of the two sites are well preserved over a range of vertebrate phyla.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.