Abstract

Allogeneic hematopoietic stem cell transplantation is a curative therapy for a number of hematological malignancies, but is limited by the development of graft-versus-host disease (GVHD). CD39 and CD73 form an ectoenzymatic pathway that hydrolyzes extracellular adenosine 5'-triphosphate (ATP) to adenosine, which respectively exacerbate or alleviate disease in allogeneic mouse models of GVHD. The current study aimed to explore the role of the CD39/CD73 pathway and adenosine receptor (AR) blockade in a humanized mouse model of GVHD. Immunodeficient nonobese diabetic-severe combined immunodeficiency-IL-2 receptor γnull mice were injected with human peripheral blood mononuclear cells, and subsequently injected with the CD39/CD73 antagonist αβ-methylene-ADP (APCP) (50mgkg-1 ) or saline for 7days, or the AR antagonist caffeine (10mgkg-1 ) or saline for 14days. Mice predominantly engrafted human CD4+ and CD8+ T cells, with smaller proportions of human regulatory T cells, invariant natural killer T cells, monocytes and dendritic cells. Neither APCP nor caffeine altered engraftment of these human leukocyte subsets. APCP (CD39/CD73 blockade) augmented GVHD as shown through increased weight loss and worsened liver histology, including increased leukocyte and human T-cell infiltration, and increased apoptosis. This treatment also increased serum human IL-2 concentrations and decreased the frequency of human CD39- CD73- CD4+ T cells. In contrast, caffeine (AR blockade) did not alter GVHD severity or human serum cytokine concentrations (IL-2, IL-6, IL-10 or tumor necrosis factor-α). In conclusion, blockade of CD39/CD73 but not ARs augments disease in a humanized mouse model of GVHD. These results indicate that CD39/CD73 blockade maintains sufficient extracellular ATP concentrations to promote GVHD in this model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.