Abstract

Morphine produces robust increases in locomotor activity in mice. Recent data indicate that dopamine (DA) D2/3 agonists attenuate the discriminative stimulus and antinociceptive effects of mu opioid agonists such as morphine. The present study was designed to determine the extent to which D2/3 receptor activation and blockade can modulate morphine-induced locomotion using a novel cumulative dosing procedure in Swiss–Webster mice. The results indicate that morphine-induced locomotion is nonsignificantly attenuated by the D2/3 agonists quinelorane and quinpirole, whereas the D2/3 antagonists eticlopride and nafadotride, as well as the partial D2/3 agonist BP897, significantly reduced morphine-induced locomotion. To determine the specificity of this modulation, these agonists and antagonists were examined in combination with caffeine, a drug that also indirectly alters DAergic activity. Unlike the effects on morphine, caffeine-induced locomotion was unaltered by eticlopride, nafadotride and BP897, but was attenuated by quinelorane and quinpirole. These results indicate that modulation of D2/3 receptors can, in turn, alter the locomotor-activating effects of morphine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call