Abstract

The reflex response to distension of the small intestine in vivo is complex and not well understood. The aim of this study was to characterize the neural mechanisms contributing to the complex time course of the intestinal secretory response to distension. Transmucosal potential difference (PD) was used as a marker for mucosal chloride secretion, which reflects the activity of the secretomotor neurons. Graded distensions (5, 10, and 20 mmHg) of distal rat duodenum with saline for 5 min induced a biphasic PD response with an initial peak (rapid response) followed by a plateau (sustained response). The rapid response was significantly reduced by the neural blockers tetrodotoxin and lidocaine (given serosally) and by intravenous (iv) administration of the ganglionic blocker hexamethonium and the NK(1) receptor antagonist SR-140333. Serosal TTX and iv SR-140333 significantly reduced the sustained response, which was also reduced by the NK(3) receptor antagonist talnetant and by the vasoactive intestinal polypeptide (VPAC) receptor antagonist [4Cl-d-Phe(6), Leu(17)]-VIP. Serosal lidocaine and iv hexamethonium had no significant effect on this component. Inhibition of nitric oxide synthase had no effect on any of the components of the PD response to distension. The PD response to distension thus seems to consist of two components, a rapidly activating and adapting component operating via nicotinic transmission and NK(1) receptors, and a slow component operating via VIP-ergic transmission and involving both NK(1) and NK(3) receptors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.