Abstract

Previous studies provided strong evidence that propyl-methylenedioxyindene (pr-MDI) interfered with calcium at an intracellular site. To further characterize the mechanism of action of pr-MDI, its pharmacological actions on chemically skinned vascular smooth muscle were examined. Rat caudal artery strips were chemically skinned with saponin (0.15 mg/mL for 1 h). The efficiency of the skinning was evidenced by a loss of contractile response to 74 mM K+. The intactness of the regulatory and contractile proteins was ascertained by the ability of the skinned tissue to contract in response to Ca2+ (free Ca2+ concentration of 10(-4) or 10(-6)M). Caffeine (25 mM) induced contraction was used as an index of the functional integrity of the sarcoplasmic reticulum in the skinned preparations. Contraction of the skinned artery with a free Ca2+ concentration of 10(-6)M was significantly obtunded by 1 X 10(-4)M trifluoperazine (a calmodulin antagonist) but not by 1 X 10(-4)M pr-MDI. Contraction of the skinned artery evoked by 25 mM caffeine in the absence of extracellular calcium was significantly obtunded by 1 X 10(-4)M pr-MDI but not by 1 X 10(-6)M nifedipine (a calcium channel blocker). The results indicate that pr-MDI acts intracellular to block calcium mobilization from the sarcoplasmic reticulum without directly interfering with the regulatory and contractile proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.