Abstract

The IL-23/IL-17 pathway is implicated in autoimmune diseases, particularly psoriasis, where biologics targeting IL-23 and IL-17 have shown significant clinical efficacy. Retinoid-related orphan nuclear receptor gamma t (RORγt) is required for Th17 differentiation and IL-17 production in adaptive and innate immune cells. We identified JNJ-54271074, a potent and highly-selective RORγt inverse agonist, which dose-dependently inhibited RORγt-driven transcription, decreased co-activator binding and promoted interaction with co-repressor protein. This compound selectively blocked Th17 differentiation, significantly reduced IL-17A production from memory T cells, and decreased IL-17A- and IL-22-producing human and murine γδ and NKT cells. In a murine collagen-induced arthritis model, JNJ-54271074 dose-dependently suppressed joint inflammation. Furthermore, JNJ-54271074 suppressed IL-17A production in human PBMC from rheumatoid arthritis patients. RORγt-deficient mice showed decreased IL-23-induced psoriasis-like skin inflammation and cytokine gene expression, consistent with dose-dependent inhibition in wild-type mice through oral dosing of JNJ-54271074. In a translational model of human psoriatic epidermal cells and skin-homing T cells, JNJ-54271074 selectively inhibited streptococcus extract-induced IL-17A and IL-17F. JNJ-54271074 is thus a potent, selective RORγt modulator with therapeutic potential in IL-23/IL-17 mediated autoimmune diseases.

Highlights

  • The IL-23/IL-17 pathway is implicated in autoimmune diseases, psoriasis, where biologics targeting IL-23 and IL-17 have shown significant clinical efficacy

  • RORγt plays a critical role in driving Th17 cell differentiation and expansion, as well as IL-17 production in innate and adaptive immune cells, making it an attractive therapeutic target for modulating diseases associated with the IL-23/IL-17 pathway

  • We report the activity of a novel, highly-selective, RORγt inverse agonist, JNJ-54271074, that inhibits RORγt function through blocking the binding with co-activator while promoting the recruitment of co-repressor, translating to potent and efficacious inhibition of RORγt-driven transcription in primary immune cells

Read more

Summary

Introduction

The IL-23/IL-17 pathway is implicated in autoimmune diseases, psoriasis, where biologics targeting IL-23 and IL-17 have shown significant clinical efficacy. Retinoid-related orphan nuclear receptor gamma t (RORγt) is required for Th17 differentiation and IL-17 production in adaptive and innate immune cells. We identified JNJ-54271074, a potent and highly-selective RORγt inverse agonist, which dose-dependently inhibited RORγt-driven transcription, decreased co-activator binding and promoted interaction with co-repressor protein. This compound selectively blocked Th17 differentiation, significantly reduced IL-17A production from memory T cells, and decreased IL-17A- and IL-22-producing human and murine γδ and NKT cells. The Th17 cell subset has been shown to be the major pathogenic population in several models of autoimmune inflammation, including collagen-induced arthritis (CIA) and experimental autoimmune encephalomyelitis (EAE)[15,16]. RORγt is a nuclear receptor target in the IL-23/IL-17 pathway, and has been shown to be tractable to modulation by oral small molecules[33], other nuclear receptors have been successfully targeted by orally available small molecules that are marketed drugs[34]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.