Abstract

Abdominal aortic aneurysm (AAA) formation is characterized by inflammation, leukocyte infiltration, and vascular remodeling. This study investigates the role of TRPV4 channels, which are transmembrane calcium channels that can regulate vascular tone, in modulating AAA formation. The elastase-treatment model of AAA in C57BL6 (WT) mice and Angiotensin II treatment model in ApoE-/- mice were used to confirm our hypotheses. The administration of a specific TRPV4 antagonist, GSK2193874, in elastase-treated WT mice and in AngII-treated ApoE-/- mice caused a significant attenuation of aortic diameter, decrease in pro-inflammatory cytokines (IL-1β, IL-6, IL-17, MCP-1, MIP-1α, MIP-2, RANTES, and TNF-α), inflammatory cell infiltration (CD3+T cells, macrophages, and neutrophils), elastic fiber disruption, and an increase in smooth muscle cell α-actin expression compared to untreated mice. Similarly, elastase-treated TRPV4-/- mice had a significant decrease in AAA formation, aortic inflammation, and vascular remodeling compared to elastase-treated WT mice on Day 14. In vitro studies demonstrated that the inhibition of TRPV4 channels mitigates aortic smooth muscle cell-dependent inflammatory cytokine production as well as decreases neutrophil transmigration through aortic endothelial cells. Therefore, our results suggest that TRPV4 antagonism can attenuate aortic inflammation and remodeling via decreased smooth muscle cell activation and neutrophil transendothelial migration during AAA formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.