Abstract

Sulbactam-durlobactam is being developed for the treatment of infections caused by Acinetobacter baumannii, including those caused by multidrug- and carbapenem-resistant isolates. This was a phase 1 study to evaluate the effects of various degrees of renal impairment, including subjects with end-stage renal disease (ESRD) on hemodialysis (HD), on the pharmacokinetics and safety profile of durlobactam (also known as ETX2514) and sulbactam after single intravenous (i.v.) dose administration. For healthy subjects and those with mild or moderate renal impairment (RI), single 1,000-mg doses each of durlobactam and sulbactam via a 3-h i.v. infusion were administered, and for severe renal impairment, 500-mg doses were administered. For subjects with ESRD and HD, 500-mg i.v. doses each of durlobactam and sulbactam were administered post-HD and pre-HD, with a 1-week washout between doses. Among 34 subjects, decreasing renal function increased systemic exposure (peak plasma concentration [Cmax] and area under the concentration-time curve [AUC]) to durlobactam and sulbactam in a generally linear manner. In healthy subjects and in those with mild or moderate renal impairment, the majority of durlobactam and sulbactam was excreted in the urine, while approximately 40% or less was excreted in urine in subjects with severe renal impairment or ESRD. In subjects with ESRD, hemodialysis was effective at removing both durlobactam and sulbactam from plasma. Renal impairment had no effect of the safety/tolerability profile of durlobactam and sulbactam. In summary, RI and ESRD had a predictable effect on the pharmacokinetic (PK) profile of durlobactam and sulbactam with no adverse effects on the safety/tolerability profile. Durlobactam and sulbactam are cleared to a similar extent by renal elimination and are impacted similarly by renal impairment. The results from this study have been used with population PK modeling and nonclinically derived PK/PD (pharmacodynamic) exposure targets to establish dosage recommendations for durlobactam and sulbactam in patients with various degrees of RI. The dosing regimen of durlobactam-sulbactam will require adjustment in patients with severe renal insufficiency and in those with ESRD.

Highlights

  • The incidence of serious, multidrug resistant (MDR) infections is on the rise globally; a need exists for new, effective antimicrobials to treat serious infections [1, 2]

  • Mean durlobactam concentration increased with decreasing renal function in healthy subjects, those with renal impairment (RI), and subjects with end-stage renal disease (ESRD) (Fig. 1)

  • The results from this study showed that with decreasing renal function, systemic exposure (Cmax and AUC) to durlobactam and sulbactam increased in a generally linear manner, which is consistent with renal elimination as the primary clearance mechanism for both compounds

Read more

Summary

Introduction

The incidence of serious, multidrug resistant (MDR) infections is on the rise globally; a need exists for new, effective antimicrobials to treat serious infections [1, 2]. Geometric mean peak plasma concentration (Cmax) ranged from 21.9 to 38.7 ␮g/ml (Table 2), with dose-normalized values that increased from 0.027 ␮g/ml/mg in healthy subjects to 0.0572 ␮g/ml/mg in the first period of the ESRD group.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.