Abstract

Omeprazole is a commonly used drug in patients with ulcerative colitis (UC). This study investigated the pharmacokinetics of omeprazole in rats with UC induced by dextran sulfate sodium (DSS). The pharmacokinetics of intravenously administered omeprazole (20 mg/kg) was investigated in normal and UC rats using LC-MS/MS. The formation of 5-OH omeprazole, a main metabolite of omeprazole, in rat liver microsomes (RLMs) from normal and UC rats was compared. The protein levels of CYP1A2, CYP2D1, and CYP3A1 in the liver were measured by Western blot. Compared with normal rats, UC rats had increased plasma concentrations of omeprazole, resulting in an increased AUC0–240 min and decreased CL. DSS treatment decreased the formation rate of 5-OH omeprazole in RLMs but did not change the affinity of the enzymes. The Vmax and CLint of RLMs from UC rats were 62% and 48% those of RLMs from normal rats, respectively. The hepatic CYP1A2 and CYP3A1 protein levels in UC rats were 42.6 and 45.2% lower than those in normal rats, respectively; however, the protein levels of CYP2D1 in the two groups were similar. The activity and expression of some hepatic CYP450 isoforms were decreased by UC, leading to changes in the pharmacokinetics of omeprazole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call