Abstract

PurposeAlthough temozolomide is widely used in the treatment of childhood central nervous system (CNS) tumors, information on its pharmacokinetic profile in the brain or cerebrospinal fluid (CSF) is sparse. This study aimed at investigating whether measurable and clinically relevant concentrations of temozolomide are reached and maintained in CSF for continuous oral administration in pediatric patients. A population pharmacokinetic model was developed to quantify CSF penetration of temozolomide.MethodsEleven pediatric CNS tumor patients (aged 4–14 years) treated with oral temozolomide using a metronomic schedule (24–77 mg/m2/day) were included. Temozolomide concentrations in 28 plasma samples and 64 CSF samples were analyzed by high-performance liquid chromatography. Population pharmacokinetic modeling and simulations were performed using non-linear mixed effects modeling (NONMEM 7.4.2).ResultsMedian temozolomide concentrations in plasma and CSF were 0.96 (range 0.24–5.99) µg/ml and 0.37 (0.06–1.76) µg/ml, respectively. A two-compartment model (central/plasma [1], CSF [2]) with first-order absorption, first-order elimination, and a transit compartment between CSF and plasma adequately described the data. Population mean estimates for clearance (CL) and the volume of distribution in the central compartment (Vc) were 3.29 L/h (95% confidence interval (CI) 2.58–3.95) and 10.5 L (8.17–14.32), respectively. Based on simulations, we found a median area under the concentration vs. time curve ratio (AUCCSF / AUCplasma ratio) of 37%.ConclusionMetronomic oral temozolomide penetrates into the CSF in pediatric patients, with even higher concentration levels compared to adults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call