Abstract

The pharmacokinetics of DA-125 were compared after intravenous (i.v.) administration of the drug, 10 mg kg-1, to control male Sprague-Dawley rats (n = 9) and uranyl nitrate-induced acute renal failure (U-ARF, n = 12) rats, or male Sprague-Dawley rats fed on a 23% (control, n = 8) or a 5% (protein-calorie malnutrition, PCM, n = 9) protein diet. After i.v. administration of DA-125, almost 'constant' plasma concentrations of M1, M2, and M4 were maintained from 1-2 h to 8-10 h in all rat groups due to the continuous formation of M2 from M1 and M4 from M3. The plasma concentrations of M3 were the lowest among M1-M4 for all rat groups due to the rapid and almost complete conversion of M3 to M4 and other metabolite(s). The AUCt values of M1 (115 against 82.5 micrograms min mL-1), M2 (33.0 against 23.6 micrograms min mL-1), and M4 (26.3 against 15.1 micrograms min mL-1) were significantly higher in the U-ARF rats than in the control rats. The percentages of i.v. dose excreted in 24 h urine as M1 (under the detection limit against 0.316%), M2 (under the detection limit against 5.58%), and M4 (0.0174 against 0.719%)--expressed in terms of DA-125--were significantly lower in the U-ARF rats than in the control rats, and this could be due to the decreased kidney function in the U-ARF rats. However, the percentages of i.v. dose recovered from the GI tract at 24 h as M1 (0.0532% against under the detection limit), M3 (0.0286% against under the detection limit), and M4 (0.702% against 0.305%)--expressed in terms of DA-125--were significantly greater in the U-ARF rats than in the control rats. All U-ARF rats had ascites, but the concentrations of M1 (0.0320 micrograms mL-1), M2 (0.0265 micrograms mL-1), M3 (under the detection limit), and M4 (0.032 micrograms mL-1) in the ascites from one rat were almost negligible. The plasma concentrations and most of the pharmacokinetic parameters of M1, M2, and M4 were not significantly different between the PCM rats and their control rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.