Abstract
The peptide-antibody (Ab) genetic fusion is a promising technology for targeting multiple antigens in a single Ab-like molecule. We have recently described generation and in vitro characterization of several such genetic fusions, using an interleukin (IL)-17A binding peptide and an anti-IL-22 Ab as a model system. In this study we assessed pharmacokinetic profiles of these model genetic fusions in mice. Specifically an IL-17A binding peptide was fused to either the heavy chain or both the heavy and the light chains of an anti-IL22 human IgG1 (referred to Compounds 1 or 2, respectively). Swiss Webster mice were given a single 10 mg/kg IV dose of Compound 1 or Compound 2 and serum concentrations were measured by a fused molecule immunoassay, in which IL-17A was used as a capture and anti-human IgG was used as a detector. In addition, serum samples were assayed using a total human IgG immunoassay. PK parameters were calculated by non-compartmental modeling. The two genetic fusions had similar PK profiles, with total body clearance of ~0.9-1.0 mL/h/kg, volume of distribution at steady-state of ~63-65 mL/kg, and elimination half-life of ~40 h. Our study provides the first characterization of the PK properties of peptide-Ab genetic fusions and suggests that although these genetic fusions appear to be eliminated faster than a typical Ab, the PK profile may be suitable for preclinical and clinical testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.