Abstract

Berberrubine is an isoquinoline alkaloid isolated from Berberis vulgaris L, and it is readily derived from berberine. In this study, a sensitive and selective ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the determination of berberrubine in rat plasma and mouse tissue has been developed. Magnoflorine was employed as an internal standard (IS), and liquid–liquid extraction by ethyl acetate was used for sample preparation. Chromatographic separation was achieved on a UPLC BEH C18 column (2.1mm×100mm, 1.7μm) with 0.1% formic acid and acetonitrile as the mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; multiple reactions monitoring (MRM) mode was used for quantification using target fragment ions m/z 322.0→307.0 for berberrubine and m/z 342.8→298.2 for IS. Calibration plots were linear in the range of 2–2000ng/mL for berberrubine in rat plasma and mouse tissue. Mean recoveries of berberrubine in rat plasma ranged from 79.6% to 84.8%. Intra-day and inter-day precision were less than 11%. The accuracy ranged from 93.6% to 106.8%. The method has also been successfully applied in pharmacokinetics and tissue distribution study of berberrubine. The absolute bioavailability of berberrubine was determined to be 31.6%. The results also show that berberrubine is rapidly absorbed and widely distributed in various tissues. The level of berberrubine in liver is highest, and followed by kidney, spleen and heart. Furthermore, the concentration of berberrubine in various tissues could also be predicted by a BP-ANN model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.