Abstract

The combination of alginate and gum acacia in previous studies showed good results in inhibiting ketoconazole precipitation due to the supersaturation phenomenon. Ketoconazole-loaded alginate and gum acacia can produce hydrogel beads through cross-linking with Ca2+ using ionotropic gelation techniques. However, the pharmacokinetic study of the ketoconazole beads loaded to alginate and gum acacia needs further investigation. This study aimed to evaluate pharmacokinetic parameters using rabbits via oral administration. The drug was administered orally to 2 groups of rabbits: pure ketoconazole (KTZ) and formulation of ketoconazole (AG75) groups. Blood samples were obtained from the ear marginal vein at various time points: 0 (before administration), 15, 30, 45, 60, 90, 120, 150, 180, 240, 300, 360, and 420 minutes after oral dosage. The pharmacokinetic study employed a non-compartment analysis to calculate the area under the curve (AUC), the volume of distribution (Vd F-1), clearance (Cl F-1), maximum concentration (Cmax), and time to reach maximum concentration (tmax). The data obtained from the parameter result was analyzed using the independent-sample T-test. The results of the KTZ group include AUC of 15.83±0.62 h μg mL-1, VdF-1 of 8.95±1.17 mL, ClF-1 of 3.45±0.3 mL h-1, Cmax of 4.7±0.69 μg mL-1, and tmax of 1.67±0.17 h. The results of the AG75 group include AUC of 27.8±1.01 h μg mL-1, VdF-1 of 11.5±2.4 mL, ClF-1 of 2.15±0.11 mL h-1, Cmax of 4.49±0.52 μg mL-1, and tmax of 2.5±0.5 h. The formulation incorporating ketoconazole beads resulted in a higher AUC0-∞ than the pure ketoconazole. This finding suggests that the created formulation has enhanced the bioavailability of ketoconazole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call