Abstract

Phosphodiesterase type 5 (PDE5) inhibitors are first-line therapy for pulmonary arterial hypertension (PAH) and erectile dysfunction. As a continuing work to improve the terminal half-lives and oral bioavailabilities of our previously reported 4(3 H)-pyrimidones, a pharmacokinetics-driven optimization focusing on the terminal substituent is described. Two major congeneric series of 4(3 H)-pyrimidones, the aminosulfonylphenylpyrimidones and acylaminophenylpyrimidones, were designed, synthesized, and pharmacologically assessed in vitro and in vivo. Among them, compound 15 (TPN171) with subnanomolar potency for PDE5 and good selectivity over PDE6 was finally recognized as a potential drug candidate, and its pharmacokinetic profiles in rats and dogs are significantly improved compared to the starting compound (3). Moreover, TPN171 was proven to exert a longer lasting effect than sildenafil in animal models, providing a foundation for a once-daily oral administration for its clinical use. TPN171 is currently being investigated in a phase II clinical trial for the treatment of PAH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.