Abstract

5-{2-[4-(3,4-Difluorophenoxy)-phenyl]-ethylsulfamoyl}-2-methyl-benzoic acid (1) is a novel, potent, and selective agonist of the peroxisome proliferator-activated receptor alpha (PPAR-α).In preclinical species, compound 1 demonstrated generally favourable pharmacokinetic properties. Systemic plasma clearance (CLp) after intravenous administration was low in Sprague–Dawley rats (3.2 ± 1.4 ml min−1 kg−1) and cynomolgus monkeys (6.1 ± 1.6 ml min−1 kg−1) resulting in plasma half-lives of 7.1 ± 0.7 h and 9.4 ± 0.8 h, respectively. Moderate bioavailability in rats (64%) and monkeys (55%) was observed after oral dosing. In rats, oral pharmacokinetics were dose-dependent over the dose range examined (10 and 50 mg kg−1).In vitro metabolism studies on 1 in cryopreserved rat, monkey, and human hepatocytes revealed that 1 was metabolized via oxidation and phase II glucuronidation pathways. In rats, a percentage of the dose (approximately 19%) was eliminated via biliary excretion in the unchanged form.Studies using recombinant human CYP isozymes established that the rate-limiting step in the oxidative metabolism of 1 to the major primary alcohol metabolite M1 was catalysed by CYP3A4.Compound 1 was greater than 99% bound to plasma proteins in rat, monkey, mouse, and human.No competitive inhibition of the five major cytochrome P450 enzymes, namely CYP1A2, P4502C9, P4502C19, P4502D6 and P4503A4 (IC50’s > 30 μM) was discerned with 1.Because of insignificant turnover of 1 in human liver microsomes and hepatocytes, human clearance was predicted using rat single-species allometric scaling from in vivo data. The steady-state volume was also scaled from rat volume after normalization for protein-binding differences. As such, these estimates were used to predict an efficacious human dose required for 30% lowering of triglycerides.In order to aid human dose projections, pharmacokinetic/pharmacodynamic relationships for triglyceride lowering by 1 were first established in mice, which allowed an insight into the efficacious concentrations required for maximal triglyceride lowering. Assuming that the pharmacology translated in a quantitative fashion from mouse to human, dose projections were made for humans using mouse pharmacodynamic parameters and the predicted human pharmacokinetic estimates.First-in-human clinical studies on 1 following oral administration suggested that the human pharmacokinetics/dose predictions were in the range that yielded a favourable pharmacodynamic response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call