Abstract

This study examined the pharmacokinetics and tissue distribution of an antisense oligonucleotide ISIS 2503, formulated in stealth (pegylated) liposomes (encapsulated) or in phosphate-buffered saline (unencapsulated). Encapsulated or unencapsulated ISIS 2503 was administered to rhesus monkeys by intravenous infusion. The concentrations of ISIS 2503 and metabolites in blood, plasma, and tissue samples were determined by capillary gel electrophoresis. Plasma concentrations of encapsulated ISIS 2503 decreased mono-exponentially after infusion with a mean half-life of 57.8 hours. In contrast, the concentration of unencapsulated ISIS 2503 in plasma decreased rapidly with a mean half-life of 1.07 hours. Both encapsulated and unencapsulated ISIS 2503 distributed widely into tissues. Encapsulated ISIS 2503 distributed primarily to the reticulo-endothelial system and there were few metabolites observed. In contrast, unencapsulated ISIS 2503 distributed rapidly to tissue with highest concentration seen in kidney and liver. Nuclease-mediated metabolism was extensive for unencapsulated oligonucleotide in plasma and tissues. The data suggest that stealth liposomes protect ISIS 2503 from nucleases in blood and tissues, slow tissue uptake, and slow the rate of clearance from the systemic circulation. These attributes may make these formulations attractive for delivering oligonucleotides to sites with increased vasculature permeability such as tumors or sites of inflammation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.