Abstract
Background and ObjectivesHuanglian-Houpo decoction (HH), which is recorded in the famous traditional Chinese medicine monograph “Puji Fang,” contains two individual herbs, Huanglian (Rhizoma coptidis) and Houpo (Magnoliae officinalis cortex). It was regularly used to treat seasonal epidemic colds and influenzas in ancient China. Our laboratory discovered that HH has a significant anti-H1N1 influenza virus effect. However, no pharmacokinetic and pharmacodynamic data concerning the anti-H1N1 influenza virus activity of HH are available to date. In the current study, the concentration-time profiles of two major components of HH, berberine and magnolol, in rat plasma were investigated.MethodsAn integrate pharmacokinetic approach was developed for evaluating the holistic pharmacokinetic characteristics of berberine and magnolol from HH. Additionally, the inhibition rate and levels of IFN-β in MDCK cells infected by influenza virus were analyzed. Data were calculated using 3p97 with pharmacokinetic analysis.ResultsThe estimated pharmacokinetic parameters were maximum plasma concentration (Cmax) 0.9086 μg/ml, area under the concentration-time curve (AUC) 347.74 μg·min/ml, and time to reach Cmax (Tmax) 64.69 min for berberine and Cmax = 0.9843 μg/ml, AUC= 450.64 μg·min/ml, Tmax = 56.86 min for magnolol, respectively. Furthermore, integrated pharmacokinetic and pharmacodynamic analysis showed that the highest plasma concentration, inhibition rate and interferon-β (IFN-β) secretion of HH first increased and then weakened over time, reaching their peaks at 60 min. The plasma concentration of HH is directly related to the anti-influenza virus effect.ConclusionThe results indicated that berberine and magnolol are the main active ingredients of HH related to its anti-influenza virus effect, which is related to the improvement of IFN-β secretion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: European Journal of Drug Metabolism and Pharmacokinetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.