Abstract

Small interfering RNAs (siRNAs) represent a new class of drugs with tremendous potential for battling previously "undruggable" diseases. After nearly 2 decades of efforts in addressing the problems of the poor drug profile of naked unmodified siRNAs, this new modality has finally come to fruition, with 5 agents (patisiran, givosiran, lumasiran, inclisiran, and vutrisiran) being approved since 2018, and with many others in the different phases of clinical development. Unlike small-molecule drugs and protein therapeutics, siRNAs have different sizes, distinct mechanisms of action, differing physicochemical and pharmacological properties, and, accordingly, a unique pharmacokinetic/pharmacodynamic (PK/PD) relationship. To support the continuous development of siRNAs, it is important to have a thorough and deep understanding of the PK/PD and clinical pharmacology related features of siRNAs. As most of the current siRNA products are conjugated by N-acetylgalactosamine (GalNAc), this review focuses on the PK/PD relationships and clinical pharmacology of GalNAc-conjugated siRNAs, including their absorption, distribution, metabolism, excretion (ADME) properties, PK/PD models, drug-drug interactions, clinical pharmacology in special populations, and safety evaluation. In addition, necessary background information related to the development of siRNAs as a therapeutic modality, including the mechanisms of action, the advantages of siRNAs, the problems of naked siRNAs, as well as the strategies used to enhance the clinical utility of siRNAs, have also been covered. The goal of this review is to serve as a "primer" on siRNA PK/PD, and I hope the readers, especially those who have a limited background on siRNA therapeutics, will have a fundamental understanding of siRNA PK/PD and clinical pharmacology after reading this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.