Abstract

Azosemide is used in the treatment of oedematous states and hypertension. The exact mechanism of action is not fully understood, but it mainly acts on both the medullary and cortical segments of the thick ascending limb of the loop of Henle. Delayed tolerance was demonstrated in humans by homeostatic mechanisms (principally an increase in aldosterone secretion and perhaps also an increase in the reabsorption of solute in the proximal tubule). After oral administration to healthy humans in the fasting state, the plasma concentration of azosemide reached its peak at 3-4 h with an absorption lag time of approximately 1 h and a terminal half-life of 2-3 h. The estimated extent of absolute oral bioavailability in humans was approximately 20.4%. After oral administration of the same dose of azosemide and furosemide, the diuretic effect was similar between the two drugs, but after intravenous administration, the effect of azosemide was 5.5-8 times greater than that in furosemide. This could be due to the considerable first-pass effect of azosemide. The protein binding to 4% human serum albumin was greater than 95% at azosemide concentrations ranging from 10 to 100 microg/ml using an equilibrium dialysis technique. The poor affinity of human tissues to azosemide was supported by the relatively small value of the apparent post-pseudodistribution volume of distribution (Vdbeta), 0.262 l/kg. Eleven metabolites (including degraded products) of azosemide including M1, glucuronide conjugates of both M1 and azosemide, thiophenemethanol, thiophencarboxylic acid and its glycine conjugate were obtained in rats. Only azosemide and its glucuronide were detected in humans. In humans, total body clearance, renal clearance and terminal half-life of azosemide were 112 ml/min, 41.6 ml/min and 2.03 h, respectively. Azosemide is actively secreted in the renal proximal tubule possibly via nonspecific organic acid secretory pathway in humans. Thus, the amount of azosemide that reaches its site of action could be significantly modified by changes in the capacity of this transport system. This capacity, in turn, could be predictably changed in disease states, resulting in decreased delivery of the diuretic to the transport site, as well as in the presence of other organic acids such as nonsteroidal anti-inflammatory drugs which could compete for active transport of azosemide. The urinary excretion rate of azosemide could be correlated well to its diuretic effects since the receptors are located in the loop of Henle. The diuretic effects of azosemide were dependent on the rate and composition of fluid replacement in rabbits; therefore, this factor should be considered in the evaluation of bioequivalence assessment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.