Abstract

The penetration of antimicrobials into the CSF is dependent on lipid solubility, molecular size, capillary and choroid plexus efflux pumps, protein binding, and the degree of inflammation. Penicillins, certain cephalosporins, carbapenems, fluoroquinolones, vancomycin, and rifampin provide the highest ratios of CSF levels to the MBC for common infecting organisms. For beta-lactam antibiotics, it is the duration of time that CSF concentrations exceed the MBC that determines the rate of bactericidal activity. It appears that levels should exceed the MBC for more than 50% of the dosing interval. The peak/MBC and AUC/MBC ratios are important determinants of efficacy for aminoglycosides and fluoroquinolones. Once-daily dosing of aminoglycosides is as effective as multiple-daily dosing regimens in experimental meningitis, probably because of drug-induced prolonged persistent effects. Fluoroquinolones do not produce as prolonged persistent effects and are slightly less effective when administered once daily. Although steroid use can reduce the penetration and decrease the bactericidal activity of some antimicrobials, such as vancomycin, in experimental meningitis, the clinical impact of steroid use in human meningitis is still unclear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.