Abstract

In this study, we report the pharmacokinetics and in vivo fate of intra-articularly transplanted human mesenchymal stem cells (MSCs) in comparison with those of intravenously administered cells. Bone marrow-derived human clonal mesenchymal stem cells (hcMSCs) were transplanted to nude mice through intravenous or intra-articular routes. The numbers of hcMSCs in blood and tissue samples were measured by the quantitative real-time-polymerase chain reaction (qPCR) with human Alu (hAlu) as a detection marker. Following intra-articular transplantation, the blood levels of hcMSCs peaked 8 h postdose and gradually diminished, showing a 95-fold higher mean residence time than hcMSCs delivered through the intravenous route. Unlike intravenously administered hcMSCs, intra-articularly injected hcMSCs were mainly retained at injection joint sites where their levels 8 h postdose were 116-fold higher than those in muscle tissues. Regardless of injection routes, biodistribution patterns did not significantly differ between normal and osteoarthritis-induced mice. Quantitative analysis using hAlu-specific qPCR revealed that hcMSC levels in joint tissues were significantly higher than those in muscle tissues 120 days postdose. These dramatic differences in kinetic behavior and fate of intra-articularly transplanted hcMSCs compared with intravenously administered hcMSCs may provide insights useful for the development of human MSCs for arthritis therapeutics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call