Abstract

To review pharmacokinetics in obese children and to provide medication dosing recommendations. EMBASE, MEDLINE, AND INTERNATIONAL PHARMACEUTICAL ABSTRACTS DATABASES WERE SEARCHED USING THE FOLLOWING TERMS: obesity, morbid obesity, overweight, pharmacokinetics, drug, dose, kidney function test, creatinine, pediatric, and child. We identified 10 studies in which the authors examined drug dosing or pharmacokinetics for obese children. No information was found for drug absorption or metabolism. Obese children have a higher percent fat mass and a lower percent lean mass compared with normal-weight children. Therefore, in obese children, the volume of distribution of lipophilic drugs is most likely higher, and that of hydrophilic drugs is most likely lower, than in normal-weight children. Serum creatinine concentrations are higher in obese than normal-weight children. Total body weight is an appropriate size descriptor for calculating doses of antineoplastics, cefazolin, and succinylcholine in obese children. Initial tobramycin doses may be determined using an adjusted body weight, although using total body weight in the context of monitoring serum tobramycin concentrations would also be an appropriate strategy. We found no information for any of the opioids; antibiotics such as penicillins, carbapenems, vancomycin, and linezolid; antifungals; cardiac drugs such as digoxin and amiodarone; corticosteroids; benzodiazepines; and anticonvulsants. In particular, we found no information about medications that are widely distributed to adipose tissue or that can accumulate there. The available data are limited because of the small numbers of participating children, study design, or both. The number and type of drugs that have been studied limit our understanding of the pharmacokinetics in obese children. In the absence of dosing information for obese children, it is important to consider the nature and severity of a child's illness, comorbidities, organ function, and side effects and physiochemical properties of the drug. Extrapolating from available adult data is possible, as long as practitioners consider the effects of growth and development on the pharmacokinetics relevant to the child's age.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.