Abstract
Background Perphenazine (PPZ) is a typical antipsychotic that is mainly administrated for the treatment of schizophrenia. Due to its highly lipophilic nature and extensive hepatic first-pass metabolism, its oral bioavailability is low (40%). Objective The novel nanocarriers like solid lipid nanoparticles (SLN) have been reported to be highly effective for improving the therapeutic effect of drugs. Therefore the main scope of the present investigation was the evaluation of in vivo characteristics of PPZ-SLN in terms of pharmacokinetic parameters and brain distribution. Methods The PPZ-SLN was prepared by the solvent-emulsification and evaporation method. The storage stability of PPZ-SLN and empty SLN powders was studied for 3 months. In vivo pharmacokinetic studies and brain distribution evaluations were performed following a single oral dose administration of PPZ and PPZ-SLN suspensions on male Wistar rats. An HPLC method was established and validated for the quantitative determination of PPZ in plasma and brain samples. Results The storage stability studies revealed the good storage stability of the both PPZ-SLN and empty SLN at 4 °C. Compared to PPZ suspension, the relative bioavailability and the brain distribution of PPZ-SLN were increased up to 2-fold and 16-fold, respectively. Mean residence time (MRT) and half-life (t1/2) of PPZ-SLN were significantly (p value < 0.01) increased in both plasma and brain homogenate compared to PPZ suspension. Conclusion The significant improvement in the pharmacokinetic properties of PPZ following one oral dose indicates that SLN is a promising drug delivery system for PPZ and shows a high potential for successful brain delivery of this antipsychotic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.