Abstract

We report the biodistribution and pharmacokinetics (PK) of a cyclic RGD-doxorubicin-nanoparticle (NP) formulation in tumor-bearing mice. The NP core was composed of inulin multi-methacrylate with a targeting peptide, cyclic RGD, covalently attached to the NPs via PEG-400. Seventy-two percent of the doxorubicin was attached to the NP matrix via an amide bond; 28% of doxorubicin was entrapped as unconjugated drug. The PK of total, unconjugated and metabolized doxorubicin was examined for 5 days following intravenous (i.v.) administration of the NP formulation (250 μg doxorubicin equiv.), revealing a bi-exponential fix with a terminal half-life of 5.99 h. In addition, the biodistribution studies revealed decreasing drug concentrations over time in the heart, lung, kidney and plasma and accumulating drug concentrations in the liver, spleen and tumor. The drug concentration in these latter tissues peaked between 24 and 48 h with the liver, spleen and tumor containing 56, 3.5 and 1.8% of the administered dose at t = 48 h, respectively. In contrast to all of the organs studied, the tumors contained high levels of a doxorubicin metabolite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.