Abstract

To develop a pharmacokinetic-pharmacodynamic disease progression (PK/PD/DIS) model to characterize the effect of etanercept in collagen-induced arthritis (CIA) rats on rheumatoid arthritis (RA) progression. The CIA rats received either 5 mg/kg intravenous (IV), 1 mg/kg IV, or 5 mg/kg subcutaneous (SC) etanercept at day 21 post-disease induction. Effect on disease progression was measured by paw swelling. Plasma concentrations of etanercept were assayed by enzyme-linked immunosorbent assay (ELISA). PK profiles were fitted first; parameter estimates were applied to fit paw edema data for PD and DIS-related parameter estimation using ADAPT 5 software. The model contained a two-compartment PK model with Michaelis-Menten elimination. For SC administration, two additional mathematical functions for absorption were added. The disease progression component was an indirect response model with a time-dependent change in paw edema production rate constant (k(in)) assumed to be inhibited by etanercept. Etanercept has modest effects on paw swelling in CIA rats. The PK and PD profiles were well described by the developed PK/PD/DIS model, which may be used for other anti-cytokine biologic agents for RA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call