Abstract

To evaluate the relationship between the pharmacokinetic/pharmacodynamic (PK/PD) parameters and the antibacterial effect of cefquinome against Actinobacillus pleuropneumoniae, a tissue cage infection model was established in piglets. In this model, an initial count of A. pleuropneumoniae of approximately 106 CFU/mL was exposed to different concentrations of cefquinome after multiple administration at dosages of 0.2, 0.4, 0.8, 1, 2, 4 mg/kg body weight once a day for 3 days. Concentration of cefquinome and bacterial numbers of A. pleuropneumoniae in the tissue-cage fluid (TCF) were monitered. An inhibitory form of sigmoid maximum effect (Emax) model was used to estimate the relationship between the antibacterial effect and PK/PD indices of cefquinome against A. pleuropneumoniae. The minimum inhibitory concentration of cefquinome against A. pleuropneumoniae was 0.016 μg/mL in TCF. The total maximum antibacterial effect was a 3.96 log10 (CFU/mL) reduction. In addition, the cumulative percentage of time over a 24 h period that the drug concentration exceeds the MIC (%T > MIC) was the pharmacokinetic-pharmacodynamic (PK-PD) index that best correlated with the antibacterial efficacy (R2 = 0.967). The estimated %T > MIC values were 11.59, 27.49, and 59.81% for a 1/3-log10 (CFU/mL) reduction, a 2/3-log10 (CFU/mL) reduction, and a 1-log10 (CFU/mL) reduction, respectively, during the 24h administration period of cefquinome. In conclusion, cefquinome exhibits excellent antibacterial activity and time-dependent characteristics against A. pleuropneumoniae in vivo. Furthermore, these data provide meaningful guidance to optimize regimens of cefquinome to treat respiratory tract infections caused by A. pleuropneumoniae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call