Abstract

Epigallocatechin-3-gallate (EGCG), derived from green tea, is an active phytochemical against many types of cancer, cardiovascular, neurological and inflammatory diseases. However, its pharmaceutical activity is limited due to low bioavailability and chemical instability. To overcome these limitations, we fabricated spherical, EGCG loaded solid lipid nanoparticles (SLN-EGCG) as an oral delivery system. The SLN-EGCG showed a hydrodynamic diameter of 300.2 ± 3.8 nm with the drug encapsulation efficiency of 81 ± 1.4%. Additionally, a slow and sustained release of EGCG was noted. Mathematical modeling of release kinetic data suggested that the SLN-EGCG followed the Higuchi model and released EGCG via fickian diffusion method. The data on pharmacokinetic parameters indicated significantly improved bioavailability and protection of EGCG from degradation due to encapsulation into SLN. The SLN-EGCG did not show any acute or sub-chronic toxicity when compared with free EGCG in the rat model. Together these data supported the hypothesis that SLN-EGCG is capable of enhancing the bioavailability and stability of EGCG and can be used as an alternative system for oral administration of EGCG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.