Abstract

N-acetylcysteine amide (NACA) is the amide derivative of N-acetylcysteine (NAC) that is rapidly converted to NAC after systemic administration. It has emerged as a promising thiol antioxidant for multiple indications; however, the pharmacokinetic property is yet unclear due to lack of an accurate quantification method. The present investigation aimed to develop an analytical method for simultaneous quantification of NACA and NAC in plasma. A new reagent (2-(methylsulfonyl)-5-phenyl-1,3,4-oxadiazole, MPOZ) was introduced for thiol stabilization during sample processing and storage. Further, we utilized tris (2-carboxyethyl) phosphine (TCEP) to reduce the oxidized forms of NACA and NAC. After derivatization, NACA-MPOZ and NAC-MPOZ were quantified using liquid chromatography–mass spectrometry (LC-MS). The new method was validated and found to have high specificity, linearity, accuracy, precision, and recovery for the quantification of NACA and NAC in plasma. Furthermore, the formed derivatives of NACA and NAC were stable for 48 h under different conditions. The method was utilized in pharmacokinetic study which showed that the bioavailability of NACA is significantly higher than NAC (67% and 15%, respectively). The pharmacokinetic of NACA obeyed a two-compartment open model. The glutathione (GSH)-replenishing capacity was found to be three to four-fold higher after the administration of NACA compared to that observed after the administration of NAC. In conclusion, the present method is simple, robust and reproducible, and can be utilized in both experimental and clinical studies. NACA might be considered as a prodrug for NAC. Furthermore, this is the first report describing the pharmacokinetics and bioavailability of NACA in mouse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.