Abstract

Bitopertin, a selective glycine transporter 1 (GlyT1) inhibitor, has been extensively studied for the treatment of schizophrenia, with known safety and tolerability profiles in the clinic. Whereas several rodent experiments have been reported, the pharmacokinetic (PK) profile of bitopertin in rodents has not been extensively reported, as only two studies disclosed limited PK parameters in male rats after oral administration. Here, we determined the PK profile of bitopertin in female Sprague-Dawley rats. Blood samples were taken serially, before and after sub-cutaneous (0.03, 0.1, 0.3, 1, and 3mg/kg) or intra-venous (0.1mg/kg) administration. Plasma levels were determined by high-performance liquid chromatography coupled with heat-assisted electrospray ionisation tandem mass spectrometry (HPLC-HESI MS/MS). Subsequently, PK parameters were calculated using non-compartmental analysis, including area under the curve (AUC), time (Tmax) to maximal plasma concentration (Cmax), clearance (CL), volume of distribution (Vz), as well as half-life (T1/2). Following sub-cutaneous injection, bitopertin exhibited dose-dependent AUC0-∞ (439.6-34,018.9ng/mL) and Tmax (3.7-24.0h), a very long terminal T1/2 (35.06-110.32h) and low CL (0.07-0.13 L/h/kg), suggesting that bitopertin is slowly absorbed and eliminated in the rat. The observed relationship between dose and the extent of drug exposure (AUC) was linear. Following administration of all sub-cutaneous doses, measured bitopertin plasma levels were comparable to levels achieved with doses already administered in the clinic. We hope that our results will be useful in the design of pre-clinical experiments in which this drug will eventually be administered sub-cutaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call