Abstract

The objective of this investigation was to compare the in vivo potency and intrinsic activity of buspirone and its metabolite 1-(2-pyrimidinyl)-piperazine (1-PP) in rats by pharmacokinetic-pharmacodynamic modeling. Following intravenous administration of buspirone (5 or 15 mg/kg in 15 min) or 1-PP (10 mg/kg in 15 min), the time course of the concentrations in blood were determined in conjunction with the effect on body temperature. The pharmacokinetics of buspirone and 1-PP were analyzed based on a two-compartment model with metabolite formation. Differences in the pharmacokinetics of buspirone and 1-PP were observed with values for clearance of 13.1 and 8.2 ml/min and for terminal elimination half-life of 25 and 79 min, respectively. At least 26% of the administered dose of buspirone was converted into 1-PP. Complex hypothermic effects versus time profiles were observed, which were successfully analyzed on the basis of a physiological indirect response model with set-point control. Both buspirone and 1-PP behaved as partial agonists relative to R-(+)-8-hydroxy-2-(di-n-propylamino)tetralin (R-8-OH-DPAT) with values of the intrinsic activity of 0.465 and 0.312, respectively. Differences in the potency were observed with values of 17.6 and 304 ng/ml for buspirone and 1-PP, respectively. The results of this analysis show that buspirone and 1-PP behave as partial 5-hydroxytryptamine(1A) agonists in vivo and that following intravenous administration the amount of 1-PP formed is too small to contribute to the hypothermic effect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.