Abstract

Pharmacokinetic-pharmacodynamic modeling and simulation can facilitate understanding and prediction of exposure-response relationships in children with acute or chronic pain. The pharmacokinetics of diamorphine (diacetylmorphine, heroin), a strong opioid, remain poorly quantified in children and dose is often guided by clinical acumen. This tutorial demonstrates how a model to describe intranasal and intravenous diamorphine pharmacokinetics can be fashioned from a model for diamorphine disposition in adults and a model describing morphine disposition in children. Allometric scaling and maturation models were applied to clearances and volumes to account for differences in size and age between children and adults. The utility of modeling and simulation to gain insight into the analgesic exposure-response relationship is demonstrated. The model explains reported observations, can be used for interrogation, interpolated to determine equianalgesia and inform future clinical studies. Simulation was used to illustrate how diamorphine is rapidly metabolized to morphine via its active metabolite 6-monoacetylmorphine, which mediates an early dopaminergic response accountable for early euphoria. Morphine formation is then responsible for the slower, prolonged analgesic response. Time-concentration profiles of diamorphine and its metabolites reflected disposition changes with age and were used to describe intravenous and intranasal dosing regimens. These indicated that morphine exposure in children after intranasal diamorphine 0.1mg.kg-1 was similar to that after intranasal diamorphine 5mg in adults. A target concentration of morphine 30μg.L-1 can be achieved by a diamorphine intravenous infusion in neonates 14μg.kg-1 .h-1 , in a 5-year-old child 42μg.kg-1 .h-1 and in an 15year-old-adolescent 33μg.kg-1 .h-1 .

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.