Abstract

CD24, which is upregulated in several human malignancies, is related to Epithelial-mesenchymal-transition (EMT) and has characteristics of cancer stem-like cells, especially in cisplatin-resistant ovarian carcinoma cells. Drug delivery systems represent a promising therapeutic approach for diseases with treatment resistance, and the present study investigated a novel CD24-targeted drug delivery system for advanced ovarian carcinoma. We produced liposomal cisplatin with a red fluorescent substance - cyanine 5.5 (GL-CDDP-Cy5.5). In order to target CD24-positive cells, an anti-CD24 monoclonal antibody was modified to the above drug (CD24-GL-CDDP-Cy5.5). Specific uptake of CD24-GL-CDDP-Cy5.5 was confirmed using a therapeutically resistant ovarian cancer cell line, Caov-3 cells. Antitumor effects of CD24-GL-CDDP-Cy5.5 were then evaluated in Caov-3 ×enograft mice. CD24-GL-CDDP-Cy5.5 showed more specific uptake by flow cytometry than GL-CDDP-Cy5.5. In xenograft mice, GL-CDDP-Cy5.5 and CD24-GL-CDDP-Cy5.5 treatment had significantly higher platinum concentration in disseminated tumor cells than cisplatin (P<0.05). Moreover, CD24-GL-CDDP-Cy5.5 suppressed tumor growth and prolonged survival time compared with other treatments. Median survival times of the control, cisplatin, GL-CDDP-Cy5.5 and CD24-GL-CDDP-Cy5.5 groups were 37, 36, 46 and 54 days after inoculation, respectively. Immunohistochemical analysis showed that CD24-GL-CDDP-Cy5.5 treatment, compared with GL-CDDP-Cy5.5, decreased the number of CD24-positive cells and suppressed the EMT phenomenon significantly (P<0.05). The present study demonstrated that CD24-GL-CDDP-Cy5.5, compared with other treatments, improved therapeutic efficacy. The present results suggested the potential for targeting anticancer therapeutics for CD24-positive cells to prevent disease progression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call