Abstract

e14556 Background: Poly(ADP-ribose) polymerase (PARP) is essential for single-stranded DNA break repair and repair of DNA damage can lead to radio- and chemo-resistance. Thus, inhibition of PARP activity can sensitize cells to cytotoxic therapies. ABT-888 is a potent, orally bioavailable PARP inhibitor. Preclinical studies suggest that ABT-888 potentiates multiple cytotoxic agents and its efficacy is correlated with plasma/tumor drug concentrations. The objective of this study was to determine the pharmacogenetic effect of genetic variants in the ABT-888 metabolic pathway, with the aim to better understand molecular basis of the variation in ABT-888 pharmacokinetics (PK) and therapeutic outcome. Methods: The major enzymes responsible for ABT-888 metabolism were identified by in vitro metabolism studies with specific recombinant human cytochrome P450 (CYP) enzymes. The functional significance of genetic variants of the identified enzymes was assessed by examining ABT-888 metabolic kinetics by candidate variant enzymes and microsomes. The association of the functional significant genetic variants with the PK and clinical outcome is being evaluated in the context of an ongoing phase I trial in which ABT-888 is administered in combination with irinotecan in patients with advanced solid tumors. Results: ABT-888 was metabolized predominantly by human CYP2D6, to a less extent by CYP1A1, and to a negligible extent by CYP1A2, 2C9, 2C19, 3A4, and 3A5. CYP2D6*10 exhibited markedly reduced catalytic capability in ABT-888 overall metabolism and the metabolite (A-925088) formation, with in vitro maximum clearance being 31% and 5.3%, respectively, of that estimated from the wild-type CYP2D6. In human liver microsomes carrying homozygous CYP2D6*4, the rates of parent drug disappearance and metabolite formation were significantly lower than those observed in the microsomes carrying wild-type CYP2D6, P < 0.05. Conclusions: CYP2D6 is the predominant enzyme responsible for the hepatic metabolism of ABT-888. Common allelic variants CYP2D6*10 and *4 are associated with significantly reduced metabolic activity towards ABT-888. CYP2D6 polymorphisms may influence the PK and therapeutic outcome of ABT-888. Its clinical relevance remains to be determined. No significant financial relationships to disclose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call